

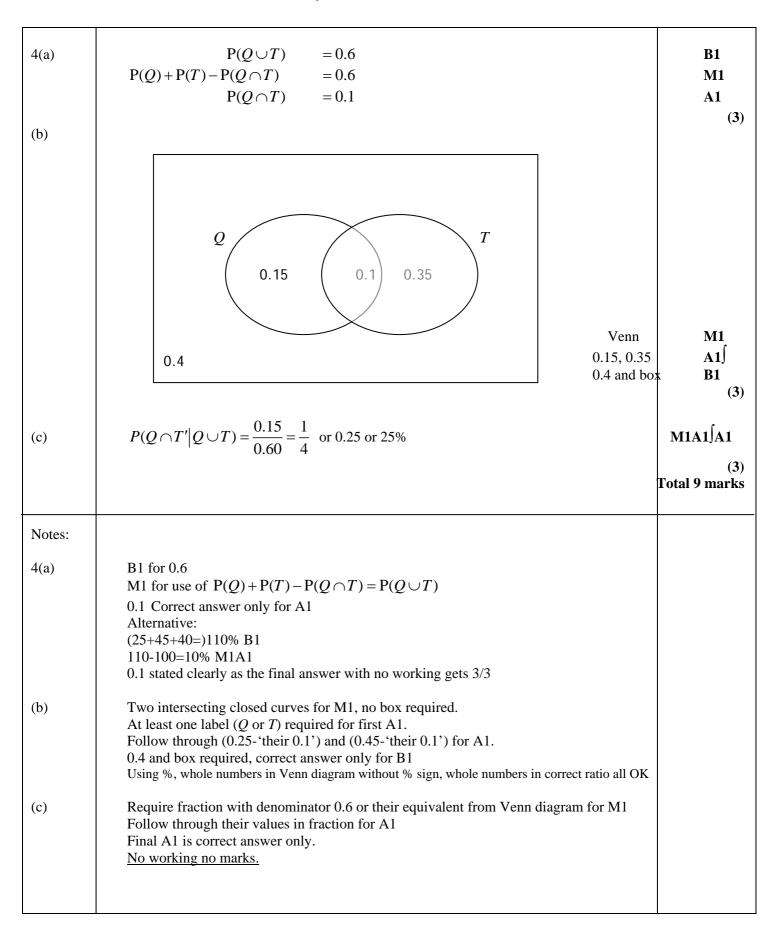
Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Statistics S1 (6681)

June 2007 6683 Statistics S1 Mark Scheme


Question Number	Scheme	Marks
1. (a)	$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{-808.917}{\sqrt{113573 \times 8.657}}$ = -0.81579	M1 A1 (2)
(b) (c)	Houses are <u>cheaper</u> further away from the station or equivalent statement B1 -0.816	(1) B1∫ (1) Total 4 marks
Notes:		
1(a)	M1 for knowing formula and clear attempt to sub in correct values from question. Root required for method. Anything that rounds to -0.82 for A1. Correct answer with no working award 2/2	
(b)	Context based on negative correlation only required. Accept <u>Houses</u> are <u>more expensive</u> closer to the <u>station</u> or equivalent statement. Require 'house prices' or 'station' and a clear correct comparison.	
(c)	Accept anything that rounds to -0.82 or 'the same' or 'unchanged' or equivalent. Award B1 if value quoted same as answer to (a).	

PMT

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks
2(a)	$\frac{1}{2}$	B1
(b)	54	(1) B1
(c)	+ is an 'outlier' or 'extreme value'Any heavy musical instrument or a statement that the instrument is heavyB1	(1) B1
(d)	$Q_3 - Q_2 = Q_2 - Q_1$ so symmetrical or no skew Dependent – only award if B1 ab	(2) B1 ove B1
(e)		(2)
	$\frac{54-45}{\sigma} = 0.67$	M1B1
	$\sigma = 13.43$	A1 (4)
	т	otal 10 marks
Notes 2(a) (b) (c) (d)	 Accept 50% or half or 0.5. Units not required. Correct answer only. Units not required. 'Anomaly' only award B0 Accept '85kg was heaviest instrument on the trip' or equivalent for second B1. Examples of common acceptable instruments; double bass, cello, harp, piano, drums, tuba Examples of common unacceptable instruments: violin, viola, trombone, trumpet, french h 'Quartiles equidistant from median' or equivalent award B1 then symmetrical or no skew for B1 Alternative: 'Positive tail is longer than negative tail' or 'median closer to lowest value' or equivalent so slight positive skew. B0 for 'evenly' etc. instead of 'symmetrical' 	
(e)	B0 for 'normal' only Please note that B mark appears first on ePEN First line might be missing so first M1 can be implied by second. Second M1 for standardising with sigma and equating to z value NB Using 0.7734 should not be awarded second M1 Anything which rounds to 0.67 for B1. Accept 0.675 if to 3sf obtained by interpolation Anything that rounds to 13.3 – 13.4 for A1.	

3(a)	Use overlay	B2 (2)
(b)	$S_{xy} = 28750 - \frac{315 \times 620}{8} = 4337.5$ **answer given** so award for method	M1
	$S_{xx} = 15225 - \frac{315^2}{8} = 2821.875$	M1A1
	4377.5	(3)
(c)	$b = \frac{4377.5}{S_{xx}}, = 1.537 = 1.5$	M1,A1
	$a = \overline{y} - b\overline{x} = \frac{620}{8} - b\frac{315}{8} = 16.97 = 17.0$	M1,A1
(d)	Use overlay	$ \begin{array}{c} (4)\\ B1\\ B1 \end{array} $
(e)	Brand D, since a long way above / from the line Using line: $y = 17 + 35 \times 1.5 = 69.5$ dependent upon 'Brand D' above	(2) B1 B1 (4)
		lotal 15 marks
Notes:		
3(a)	Points B2, within 1 small square of correct point, subtract 1 mark each error minimum 0.	
(b)	Anything that rounds to 2820 for A1	
(c)	Anything that rounds to 1.5 and 17.0 (accept 17)	
(d)	Follow through for the intercept for first B1 Correct slope of straight line for second B1.	
(e)	Anything that rounds to 69p-71p for final A1. Reading from graph is acceptable for M1A1. If value read from graph at $x = 35$ is answer given but out of range, then award M1A0.	

18-25 group, area=7x5=35 25-40 group, area=15x1=15	B1 B1 (2
(25-20)x5+(40-25)x1=40	M1A (2
Mid points are 7.5, 12, 16, 21.5, 32.5	M1
	B1
$\frac{\sum f}{\sum f} = \frac{1891}{100} = 18.91$	M1A
$\boxed{41022}$	(4
$\sigma_t = \sqrt{\frac{41055}{100} - \overline{t}^2} \qquad \qquad \sqrt{\frac{n}{n-1} \left(\frac{41055}{100} - \overline{t}^2\right)} \text{ alternative OK}$	M1
$\sigma = \sqrt{52.74} = 7.26$	M1 A1
	(.
$Q_2 = 18$ or 18.1 if (n+1) used	B1
	M1A
$Q_3 = 18 + \frac{25}{35} \times 7 = 23$ or 25.75 numerator gives 23.15	A1
0.376 Positive skew	(4 B1 B1∫ (1 Total 17 marl
5x5 is enough evidence of method for M1.	
Award 2 if 40 seen.	
Look for working for this question in part (d) too. Use of some mid-points, at least 3 correct for M1. These may be tabulated in (d).	
Their $\frac{\sum ft}{\sum f}$ for M1 and anything that rounds to 18.9 for A1.	
Clear attempt at $\frac{41033}{100} - \overline{t}^2$ or $\frac{n}{n-1} \left(\frac{41033}{100} - \overline{t}^2 \right)$ alternative for first M1.	
They may use their \overline{t} and gain the method mark.	
Clear attempt at either quartile for M1	
These will take the form 'their lower limit'+ correct fraction x 'their class width'.	
	25-40 group, area=15x1=15 (25-20)x5+(40-25)x1=40 Mid points are 7.5, 12, 16, 21.5, 32.5 $\sum_{r} f = 100$ $\sum_{r} \frac{ft}{f} = \frac{1891}{100} = 18.91$ $\sigma_{r} = \sqrt{\frac{41033}{100} - \overline{t}^{2}} \qquad \sqrt{\frac{n}{n-1} \left(\frac{41033}{100} - \overline{t}^{2}\right)} \text{ alternative OK}$ $\sigma_{r} = \sqrt{52.74} = 7.26$ $Q_{2} = 18 \qquad \text{or } 18.1 \text{ if } (n+1) \text{ used}$ $Q_{1} = 10 + \frac{15}{16} \times 4 = 13.75 \qquad \text{or } 15.25 \text{ numerator gives } 13.8125$ $Q_{3} = 18 + \frac{25}{35} \times 7 = 23 \qquad \text{or } 25.75 \text{ numerator gives } 23.15$ 0.376 Positive skew 5x5 is enough evidence of method for M1. Condone 19.5, 20.5 instead of 20 etc. Award 2 if 40 seen. Look for working for this question in part (d) too. Use of some mid-points, at least 3 correct for M1. These may be tabulated in (d). Their $\sum_{r} \frac{ft}{f}$ for M1 and anything that rounds to 18.9 for A1. Clear attempt at $\frac{41033}{100} - \overline{t}^{2}$ or $\frac{n}{n-1} \left(\frac{41033}{100} - \overline{t}^{2}\right)$ alternative for first M1. They may use their \overline{t} and gain the method mark. Square root of above for second M1 Anything that rounds to 7.3 for A1.

6(a) (b)	$P(X > 25) = P\left(Z > \frac{25 - 20}{4}\right)$ = P(Z > 1.25) = 1 - 0.8944 = 0.1056 $P(X < 20) = 0.5 \text{ so } P(X < d) = 0.5 + 0.4641 = 0.9641$ $P(Z < z) = 0.9641, \ z = 1.80$ $\frac{d - 20}{4} = 1.80$ $d = 27.2$	M1 M1 A1 (3) B1 B1 M1 A1 (4) Total 7 marks
Notes:		
(a)	Standardise with 20 and 4 for M1, allow numerator 20-25 1- probability for second M1 Anything that rounds to 0.106 for A1. Correct answer with no working award 3/3	
(b)	0.9641 seen or implied by 1.80 for B1 1.80 seen for B1 Standardise with 20 and 4 and equate to z value for M1 Z=0.8315 is M0 Anything that rounds to 27.2 for final A1. Correct answer with no working 4/4	

[
7(a)	p+q=0.45 .	B1
	$\sum x P(X = x) = 4.5$	M1
	3p + 7q = 1.95	A1
		(3)
(b)	Attempt to solve equations in (a) q = 0.15	M1 A1
	p = 0.30	A1 A1
	<i>p</i> 0.50	(3)
(c)	P(4 < X < 7) = P(5) + P(7)	M1
	= 0.2 + q = 0.35	A1∫
		(2)
(d)	$Var(X) = E(X^2) - [E(X)]^2 = 27.4 - 4.5^2$	M1
	= 7.15	A1 (2)
(e)	$E(19-4X) = 19-4 \times 4.5 = 1$	(2) B1
		(1)
(f)	Var(19-4X) = 16Var(X)	M1
	$=16 \times 7.15 = 114.4$	A1
		(2) Total 13 marks
Notes:		
Notes.		
7(a)	0.55 + p + q = 1 award B1. Not seen award B0.	
	0.2 + 3p + 1 + 7q + 1.35 = 4.5 or equivalent award M1A1	
	3p + 7q + k = 4.5 award M1.	
(b)	Attempt to solve must involve 2 linear equations in 2 unknowns	
	Correct answers only for accuracy.	
	Correct answers with no working award 3/3	
(c)	Follow through accuracy mark for their q , $0 < q < 0.8$	
(d)	Attempt to substitute given values only into correct formula for M1.	
(u)	7.15 only for A1	
	7.15 seen award 2/2	
	Accort (invisible breakets) is $\int_{-\infty}^{2} V_{ext}(X)$ provided an even positive	
(f)	Accept 'invisible brackets' i.e. -4^2 Var (X) provided answer positive. Anything that rounds to 114 for A1.	